Trigonometry
The common three trigonometric ratios are sine, cosine and tangent which are defined by the following triangle:
abc show us the sides, ABC represent the angles.
$$Sine\, of\, A=\frac{measure\,of\,the\,leg\,opposite\,angle\,A}{measure\,of\,the\,hypotenuse}$$
$$\Rightarrow sin\left ( A \right )=\frac{a}{c}$$
$$Cosine\,of\,A=\frac{measure\,of\,the\,leg\,adjacent\,to\, angle\,A}{measure\,of\,the\,hypotenuse}$$
$$\Rightarrow cos\left ( A \right )=\frac{b}{c}$$
$$Tangent\, of\, A=\frac{measure\,of\,the\,leg\,opposite\,angle\,A}{measure\,of\,the\,leg\,adjacent\,to\,angle\,A}$$
$$\Rightarrow tan\left ( A \right )=\frac{a}{b}$$
Example
Find the sin(B), cos(B) and tan(B).
$$Sine\, of\, B=\frac{measure\,of\,the\,leg\,opposite\,angle\,B}{measure\,of\,the\,hypotenuse}$$
$$Sin\, B=\frac{9}{15}=\frac{3}{5}=0.6$$
$$Cosine\,of\,B=\frac{measure\,of\,the\,leg\,adjacent\,to\, angle\,B}{measure\,of\,the\,hypotenuse}$$
$$Cos\, B=\frac{6}{15}=\frac{2}{5}=0.4$$
$$Tangent\, of\, B=\frac{measure\,of\,the\,leg\,opposite\,angle\,B}{measure\,of\,the\,leg\,adjacent\,to\,angle\,B}$$
$$Tan\, B=\frac{9}{6}=1.5$$
Video lesson
Find the measure of angle a in this right triangle