Multiplying polynomials and binomials
We can use the area of a rectangle to explain how you multiply a polynomial by a monomial.
Example
Find the area of this rectangle.
$$A=b\cdot h$$
$$A=5x\left ( 5x-4 \right ) \\A=5x\cdot 5x-5x\cdot 4$$
$$A=5\cdot 5\cdot x\cdot x-5\cdot 4\cdot x$$
$$A=25x^{2}-20x$$
This method is called the distributive property. The distributive property shows us how to write an expression in a different way.
$$a(b+c)=ab+ac$$
Example
With numbers
$$5\left (2+6 \right )=5\cdot 2+5\cdot 6=10+30=40$$
With variables and numbers:
$$7x+4x= x\left (7+4 \right )=11x $$
We can use the area of another rectangle to explain what happens when you multiply two binomials.
Example
The area of the rectangle can be calculated by the use of the distributive property:
$$A=b\cdot h$$
$$A=({\color{red} {4x}}+{\color{blue} {3}})({\color{green} {2x}}+2)$$
$$A=({\color{red} {4x}}+{\color{blue} {3}})\cdot {\color{green} {2x}}+({\color{red} {4x}}+{\color{blue} {3}})\cdot 2$$
$$A={\color{red} {4x}}\cdot {\color{green} {2x}}+{\color{blue} {3}}\cdot {\color{green} {2x}}+{\color{red} {4x}}\cdot 2+{\color{blue} {3}}\cdot 2$$
$$A=8x^{2}+6x+8x+6$$
$$A=8x^{2}+14x+6$$
Video lesson
Expand the expression
$$(3x+4)(x^{2}-2)$$