Geometric sequences and series
A geometric sequence is a sequence of numbers that follows a pattern were the next term is found by multiplying by a constant called the common ratio, r.
$$a_{n}=a_{n-1}\cdot r\;\: or\;\: a_{n}=a_{1}\cdot r^{n-1}$$
Example
Write the first five terms of a geometric sequence in which a1=2 and r=3.
We use the first given formula:
$$a_{1}=2$$
$$a_{2}=2\cdot 3=6$$
$$a_{3}=6\cdot 3=18$$
$$a_{4}=18\cdot 3=54$$
$$a_{5}=54\cdot 3=162$$
Just as with arithmetic series it is possible to find the sum of a geometric series. It is found by using one of the following formulas:
$$S_{n}=\frac{a_{1}-a_{1}\cdot r^{n}}{1-r}\; \; or\; \; S_{n}=\frac{a_{1}(1-r^{n})}{1-r}$$
Video lesson
Use the formula for the sum of a geometric series to determine the sum when a1=4 and r=2 and we have 12 terms.